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Abstract: Use of straight round bars is necessary in industries due to requirement of raw material as input for 
production of value-added products. Bars are often available in bent condition; hence straightening is a necessity 
before commercial use. Therefore, choosing a proper lot of straightened bars with acceptable level of residual 
curvature is a quality requirement. Use of statistical analysis by Factorial Design will help in decision making 
through appropriate Test Hypothesis for quality criterion of acceptable range of residual curvatures. This paper has 
made an attempt to look into the applicability of Factorial Design in bar straightening process. 
Key words: Roller diameter, straightness, helix angle, residual curvature. 
 
Teorijsko ispitivanje procesa ispravljanja šipki sa zaostalim krivinama u rasporedu unakrsnih valjaka 
primenom dvofaktonog dizajn plana. Upotreba ravnih okruglih šipki je neophodna u industriji zbog potrebe za 
sirovinom kao inputom za proizvodnju proizvoda sa dodatom vrednošću. Šipke su često dostupne u savijenom 
stanju; stoga je ispravljanje neophodno pre komercijalne upotrebe. Stoga je izbor odgovarajuće količine 
ispravljenih šipki sa prihvatljivim nivoom preostale zakrivljenosti uslov kvaliteta. Korišćenje statističke analize 
faktornog dizajna će pomoći u donošenju odluka kroz odgovarajuće testiranje hipoteza za kriterijum kvaliteta 
prihvatljivog opsega zaostalih krivina. Ovaj rad je pokušao da ispita primenljivost faktorskog dizajna u procesu 
ravnanja šipki. 
Ključne reči: Prečnik valjka, ravnost,, ugao zavojnice, zaostala zakrivljenost. 
 
1. INTRODUCTION 
 
 In general round bars produced in re-rolling 
industries are often not perfectly straight or it can be 
stated that straightness is in general  compromised after 
production of round bars. Commercially available round 
bars are often available with the degree of straightness 
that varies from 1 in 750 to 1 in 5000 [1]. Bars are 
therefore usually available with some inbuilt residual 
curvatures.  Sometimes round bars are straightway used 
with some residual curvatures along the bar length 
where precision is not a dominant factor. However, 
everywhere such bars cannot be deployed straightway 
as built-in residual curvature may not be in acceptable 
range as far as quality is concerned. Hence, it is quite an 
essential requirement that bars with residual curvatures 
are processed with an aim to reduce residual curvature 
so that the production lot falls in acceptable range. 
Actual requirement of straightness of round bars 
depends on deployment of bars either in raw form or 
after required straightening through kinematic reverse 
bending with cross-roll straighteners. However, option 
remains that in precision application, round bars can be 
machined to required size as per design requirement. 
Sometimes machining is not preferred as it would 
reduce bar diameter. Moreover, if material is costly then 
machining would result in increase of product cost. 
However, a bent bar can be made straight through 
reverse kinematic bending either with the help of cross-
roll straighteners or by application of load under locking 
mechanism [2]. The process of bar straightening in 
cross-roll arrangement essentially begins with the 

system of cross-rolls at helix angle, α also termed as roll 
angle and roller radius, R which correspond to the 
equations of throughput speed of bar [3,4]. A brief 
discussion on theoretical aspects of bar straightening 
will explain the process clearly. Present scope of work 
is to understand various factors involved in cross-roll 
straightening and thereupon to look at the significance 
of experimental design in the process of kinematic 
reverse bending. Cross-rolls at an angle termed as helix 
angle is a key parameter in the process. This also causes 
bars to rotate along the axis and the bar moves forward. 
Roller diameter plays another important role in the 
process. Therefore, roller diameter and helix angle may 
be considered as two factors and can be employed in 
experimental design. The present paper has been 
focussed on the statistical aspect of bar straightening 
process mainly to understand the significance of factors 
like helix angle and roller diameter in the process of 
straightening. The analysis of variance will show the F 
Test value thus enabling to arrive into statistical 
decision based on the observations.  
 
2.  THEORETICAL ASPECTS OF BAR 

STRAIGHTENING 
 

The round bar’s motion in cross-roll arrangement has 
been described in the schematic diagram (Fig.1a). The 
cross-rolls are set at helix angle +α, with respect to bar’s 
axial motion and throughput speed, vx. The bar rotates 
about its own axis at an angular velocity   as shown in 
Fig.1(b).  Fig.1(c) and Fig.1(d) show the diagram of 
rollers making helix angle α with bar in motion and 
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photograph of rollers and bar or tube in a straightening 
machine. Radius of bar and rollers are r and R 
respectively.     

 
    Fig. 1(a). Round bar’s motion through Cross-Rolls 
 

 
        Fig. 1(b). Bar’s rotation and angular velocity 
 

 
Fig. 1(c). Diagram of roller showing helix angle α [5] 

 

 
Fig. 1(d). Picture of Cross-Roll in Straightening  

Machine [6] 
 
Cross-rolls actually cause bars to rotate about its own 
axis as the bar progresses forward through the rolls. If ω 
is the angular velocity of the rolls of radius R, 
throughput velocity vx and the tangential velocity is vt of 
a point on the surface of the bar, then it can be written 
as [4] 

vx = ωRsinα      and       (1) 
vt = ωR cosα   (2) 

 

The pitch length of the bar ‘p’ can be expressed in terms 
of helix angle α and bar radius as below 

p = 2πrtanα      (3) 

In non-dimension form,  
      ̅ =

	
=  2π ̅tanα, where ̅ =  (4) 

where ‘l’ is the length of bar. 

3. ANALYSIS OF RESIDUAL CURVATURE IN 
STRAIGHTENING PROCESSES 

 
Non-dimensional form on the relationship of moment-
curvature (M – C) is described as below [4] 

       = 	              0 < < 1, 
      = ̅         1 < ,                      (5) 

  

where,    = M/My,  and  ̅ = C/Cy 

 

 
Fig. 2. Relationship between curvature change and 

resisting moment developed in the bar. 
 
My is the yield moment and Cy is the yield curvature for 
a section considered. ̅ is a function of ̅ , which 
depends on the stress-strain relationship of the material 
beyond the yield point. For convenience purpose, 
curvature and moment of resistance in reverse loading 
will be taken as positive. Considering a bar to be 
straightened is having initial residual curvature, - ̅r, the 
length of the bar should be subjected to loading in the 
reverse direction. The loading should be kinematically 
either by applying a known moment or known 
curvature. If the loading is kinematic and the final 
curvature to which the bar length is subjected is ̅f, then, 
in order to leave no final residual curvature on 
unloading, the curvature change Δ ̅ , as illustrated in 
Fig. 2 can be written as 
    Δ ̅ =	 f   +  ̅r  (6) 
 The prime objective of the entire process is to get 
straight bar practically without any residual curvature or 
with the range of final residual curvatures acceptable to 
the user in large scale production so that product lot is 
within Acceptable Quality Level (AQL). 
 
4.  TWO-FACTOR FACTORIAL DESIGN OF 

FINAL RESIDUAL CURVATURES IN BAR 
STRAIGHTENING 

 
Based on equations discussed above, it can be seen that 
helix angle and roller diameter play significant roles in 
the process of bar straightening. Therefore, helix angle 
and roller diameters may be considered as variables 
(factors) in factorial design for above process 
considering one specific bar diameter. However, it is 
possible to choose bar diameter also as a variable or 
factor when several bars of various sizes are in 
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consideration. However, at present the focus is on a 
two-factor factorial design. Through factorial design it 
may be possible to find a helix angle that is most 
suitable for the process and can be considered as robust 
design. As a general case, let final residual curvature 
Cfijk be the observed responses when factor of roller 
diameter is at ith row (i =1,2,…,a) and factor of helix 
angle is at jth column  (j=1,2,…,b) for kth replication 

(k=1,2,…,n). 
where,  
‘a’ is the level of factor of roller diameter; 
‘b’ is the level of factor of helix angle and 
‘n’ is the number of replications.  
In general, a two factorial design for helix angle roller 
diameter  can be described as shown in Table-1. 

 
  

Factor of Helix angle for α
j 
for jth level. 

 

Factor of 

Roller 

Diameter (Di)  

for ith level  

 α
1
 α

2
 … α

b
 

D1 Cf111, Cf112, … Cf11n Cf121, Cf122,…Cf12n  Cf1b1, Cf1b2, … Cf1bn 
D2 Cf211, Cκf212,…Cf21n Cf221, Cf222, … Cf22n  Cf2b1, Cf2b2, … Cf2bn 
. 
. 
. 

    

Da Cfa11, Cfa12, … Cfa1n Cfa21, Cfa22, … Cfa2n  Cfab1, Cfab2, … Cfabn 

Table 1. Two Factorial Design for Final Residual Curvatures 
 
 The order in which the abn observations are taken is 
selected at random so that this design is a completely 
randomized design. 
 The effects model of the above observations in a 
factorial experiment can be written as below. 
 

Cfijk = μ+ τi + βj + (τβ)ij + ϵijk 

                                                                     { i= 1,2,….,a 
                    { j= 1,2,….,b 
                    {k=1,2,…,n                 (7) 
 

where,  
           μ is the overall mean effect of roller diameter and 

helix angle,  
           τi is the effect of the ith level of Roller  Diameter 

factor,  
           βj is the effect of the jth level of helix angle 

factor,  
      (τβ)ij is the effect of interaction between τi and βj, 

and 
         ϵijk is the random error component.  
 
Both the factors are assumed to be fixed, and the 
treatment effects are defined as deviations from the 
overall mean, so that 
 

for Roller Diameter      ∑ 	 = 0  and                  (8) 
for Helix Angle           ∑ 	 = 0.                          (9) 
 

Similarly, the interaction effects between roller diameter 
and helix angle are fixed and defined in following way 
 

 ∑ 	 τβ  = ∑ 	 τβ  = 0  (10) 
 

Considering n number of replication in the experiment, 
there are ‘abn’ number of total observations.  
 
It is also possible to express factorial experiment 
through means model [7] as below. 
 
Cfijk = μij + ϵijk { i= 1,2,…,a 
  { j= 1,2,…,b 
  { k= 1,2,…,n                         (11) 
 

where, the mean of the ijth cell is  
 
              μij = μ + τi + βj + (τβ)ij                        (12) 
 
 In this case two-variable factorial, both variables are 
of equal interest. Testing hypotheses about the equality 
of Roller Diameter treatment effects, can be written as  

 

Null Hypothesis H0:τ1 = τ2 = ... = τa = 0         (13) 
Alternate Hypothesis H1: at least one τi ≠ 0         (14) 
 

Again, for the equality of helix angle treatment effects, 
it can be written as  
 

    H0 : β1 = β2 = …. = βb = 0          (15) 
    H1 : at least one βj ≠ 0           (16) 
 
In case there is interactions of Roller Diameter and 
Helix angle, then  
 
    H0 : (τβ)ij =  0  for all  i,j          (17) 
    H1 : at least one (τβ)ij ≠ 0          (18) 
 
5.   STATISTICAL ANALYSIS OF THE 

DIAMETER AND HELIX ANGLE FACTORS 
IN BAR STRAIGHTENING PROCESS  

 
Let Cfi.. denote the total observations of curvature under 

the ith level of Diameter factor,  
       Cf.j. denote the total observations of curvature under 

the jth level of Helix angle factor,  
       Cfij. denote the total of all observations of curvature 

in the ijth cell, and 
       Cf… denote the grand total of all the observations of 

curvature.  
We define ̅ fi.., ̅ f,j., ̅ fij., and ̅ f… as the corresponding 
row, column, cell and grand averages. 
 

Mathematically we can express as below: 
 

                Cfi.. = ∑ 	∑ 	 fijk , 
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                ̅fi.. = ..         i=1,2,..,a                         (19) 

                Cf.j. =		∑ 	 ∑ 	 fijk , 

                        ̅f.j. =  . .          j=1,2,.,b                        (20) 

                Cfij. = ∑ 	 fijk , 

                ̅fij. = .								i= 1,2,…..,a 

                                       j= 1,2,…..,b                    (21) 
 
                 Cf... = ∑ 	∑ 	∑ 	 fijk , 

                 ̅f... =  ...                                     (22) 

 
The total corrected sum of squares may be written as  
 
    ∑ 	∑ 	 ∑ 	 Cfijk- ̅f...)

2  
 

=  ∑ 	∑ 	∑ 	[( ̅fi..- ̅f...) + ( ̅f.j. - ̅f...)           
       + ( ̅fij.- ̅fi.. - ̅f.j. + ̅f...) + (Cfijk - ̅fij.)]

2 
 

=  bn∑ 	( ̅fi..- ̅f...)
2+an∑ 	( ̅f.j.- ̅f...)

2             + 
n∑ 	∑ 	( ̅fij.- ̅fi.. - ̅f.j. + ̅f...)

2  
   +  ∑ 	∑ 	∑ 	(Cfijk - ̅fij.)

2        (23) 
 
 It can be further expressed the above in a simplified 
manner as below. 
 Total sum of squares (SST) has been partitioned into 
following manner  
(i) a sum of squares due to factor of Roller Diameter, 

(SSRD);  
(ii) a sum of squares due to factor of Helix Angle, 

(SSHA);  
(iii) a sum of squares due to interaction between Roller 

Diameter and Helix Angle (SSRDHA);  
(iv) a sum of squares due to error (SSe).  

 

Symbolically, it can be stated as    

SST  = SSRD + SSHA + SSRDHA + SSe 
 

 The number of degrees of freedom associated with 
each sum of squares is described in Table 2. 
 

Table 2. Degrees of freedom for various factors 
 

Mean Squares (MS) can be evaluated from each sum of 
squares divided by its degrees of freedom and can be 
expressed as 
 

MSRD       =  ,   

 MSHA      =  ,  

   MSRDHA   =  , 

   MSe        =                     (24) 

It can now be evaluated that the expected values (E) of 
the mean squares can be expressed by  constant variance  
σ2  as given below. 
 

E(MSRD) = E ( )  =   σ2 + 
∑ 	

              (25) 

E(MSHA) = E ( )  =  σ2 +  
∑ 	

             (26) 

E(MSRDHA)=E( )= σ2+
∑ 	∑ 	

	(27) 

and   E(MSe) = E ( )  =  σ2                        (28) 

 
 If it is assumed that model is adequate and that the 
error terms ϵijk are normally and independently 
distributed with constant variance σ2, then each of the 
ratios of mean squares MSRD/MSe, MSHA/MSe, 
MSRDHA/MSe can be stated as F distribution with  (a-1), 
(b-1) and (a-1)(b-1) numerators degree of freedom, 
respectively, and ab(n-1) denominator degrees of 
freedom, and the critical region would be the upper tail 
of the F distribution. 
The total sum of squares is computed as  

 SST   =   ∑ 	∑ 	 ∑ 	  - ...        (29) 

 
The sums of squares for the roller diameter (RD) and 
helix angle (HA) are 
 

 SSRD  =  ∑ 	 ..- 
...         (30) 

 

 SSHA  =  ∑ 	 . .- 
...                                (31) 

 

For roller diameter and helix angle interaction, SSRDHA 

may be evaluated in two stages. First step is the 
computation on the sum of squares between the ab cell 
totals, which may be termed as sum of squares due to 
“sub-totals”   

 SSSubtotals  =   ∑ 	∑ 	 .	-  
...        (32) 

 

The sum of squares also contains SSRD and SSHA.  
 
 

Therefore, the second step is to compute SSRDHA as 
 

 SSRDHA  =  SSSubtotals – SSRD – SSHA       (33) 
 

It may be computed SSE by subtraction as 
 

 SSe = SST  – SSRDHA – SSRD – SSHA       (34) 
 
6. ANALYSIS OF VARIANCE (ANOVA) FOR 

FINAL RESIDUAL CURVATURE. 
 
The final residual curvature has been analysed by using 
ANOVA based on the variables of roller diameter (RD) 
and helix angle (HA) in the cross-roll bar straightening 
process. The usual procedure is to employ a statistical 
software package to conduct an ANOVA. However, 
mathematical computing of the sums of squares is 
necessary for developing the software. Analysis of 
variance (ANOVA) for the two variables RD, HA and 
its corresponding interaction factor (RDHA) along with 
its  error(e) component is described   in Table-3. 
    

Effect  Degrees of Freedom 
Roller Diameter  a-1 

Helix Angle  b-1 
Roller Diameter & 

Helix Angle 
Interaction 

 (a-1)(b-1) 

Error (e)  ab(n-1) 
Total  abn-1 
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Source of 
Variation 

Sum of 
Squares 

Degrees 
of 

Freedom 

Mean 
Square 

F0 

Roller 
Diameter 
(RD) 
Treatments 

SSRD a-1 MSRD    

=  

F0  = 

 

Helix 
Angle (HA) 
Treatments 

SSHA b-1 MSHA    

=  

F0 = 

 

Interactions 
between 
Roller 
Diameter & 
Helix 
Angle 
(RDHA) 

SSRDHA (a-1)(b-1) MSRDH = F0 = 

Error (e) SSe ab(n-1) MSe = 

 

 

Total SST abn-1   
Table 3. Analysis of Variance for the variables of roller 

diameter and helix angle 
 
7.  DISCUSSION 

 The theoretical aspects of bar straightening have 
been briefly discussed with prime consideration of using 
statistical theories considering two important process 
variables i.e. roller diameter and helix angle in the bar 
straightening process. It is pertinent to consider that 
roller diameter and helix angle of rollers play significant 
roles in the process which is easily understood from the 
various equations. Considering variables like Roller 
diameter and Helix angle as factors is essential so as to 
understand the significance of the observations of final 
curvatures based on above under different values of 
both factors. Statistical aspects have been reasonably 
detailed like sum of squares and means thereof have 
been evaluated based on curvature values. A systematic 
approach has been taken to arrive into mean square 
values based on factors and their interactions along with 
error term. The degrees of freedom for both the factors 
have been taken care of based on their levels. 
 
8.  CONCLUSION 

 Application of ANOVA based on factors of helix 
angle and roller diameter has become now quite simple.  
The above process shall hold good by F Test and 
compare the value from the F Table so as to arrive into 
statistical conclusion for an appropriate hypothesis. The 
possibility of inclusion of other factors like type of 
material i.e. elastic/plastic modulus and bar diameter 
remains. Considering more factors for ANOVA will 

make the study more elaborate. This type of 
investigation may develop useful tool for justification of 
role and importance on various factors in the process of 
bar straightening which can certainly form the basis for 
process improvement.  
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