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A B S T R A C T 

This study evaluates the energy potential of wood biomass (sawdust) by employing 

computer-aided techniques to predict the higher heating value (HHV) through ultimate 

and proximate analyses. The ultimate analysis focuses on elemental properties, while 

the proximate analysis examines physical properties. The developed regression model 

demonstrates a high coefficient of determination (R²) of 99.69% for ultimate analysis, 

indicating a strong predictive capability. In contrast, the proximate analysis reveals 

individual correlation coefficients of 85.80% for moisture content, 79.18% for fixed 

carbon, and 28.10% for volatile matter. To assess the significance of each independent 

variable in the model, the p-values associated with the coefficients were examined. For 

the ultimate analysis, all input variables except for sulfur (%S) (p ≈ 0.22) had p-values 

less than 0.05 at a 95% significance level, indicating their statistical significance. 

However, in the proximate analysis, only volatile matter exhibited a relatively high p-

value (p ≈ 0.12), rendering it statistically insignificant in the model. The elevated p-

values for sulfur and volatile matter suggest their minimal impact on HHV predictions 

in their respective models. The computer program developed for this study automates 

the prediction process, achieving an accuracy within ±5 MJ/kg between predicted and 

experimental values across the dataset and is uniformly applicable to all individual 

models or biomass type, significantly reducing analysis time. The findings of this study 

contribute to optimizing biomass energy systems, enhancing energy recovery efficiency, 

and advancing sustainable energy practices. 
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1. INTRODUCTION

Energy is a crucial asset for human survival, primarily 

derived from the sun, earth, and moon [1]. It exists in 

primary forms such as hydro, coal, natural gas, wind, solar, 

and biomass, and in secondary forms like electricity, 

hydrogen, and gasoline [1]. Energy drives national wealth 

and economic growth, making it essential for 

industrialization and development across all sectors [2]. 

Consequently, societies are compelled to seek energy 

sources that are cost-effective, plentiful, and have minimal 

environmental impact due to the rising need for energy. 

However, fossil fuels fall significantly short in meeting 

these objectives. This has led to biomass being considered 

a plentiful, readily available, renewable, and 

environmentally sustainable energy source [3], [4]. 
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Biomass has garnered considerable interest as a renewable 

energy source because it can provide charcoal, bio-oil, and 

biofuel. These products help address energy shortages and 

reduce the environmental risks associated with using fossil 

fuels for power production [5], [6]. Biomass is also 

classified as a CO2 balanced or neutral fuel since it does 

not contribute to the overall rise in CO2 emissions in the 

atmosphere [7]. Essentially, the quantity of CO2 produced 

when biomass is burned is roughly equivalent to the 

amount of CO2 absorbed from the atmosphere during 

photosynthesis in green biomass [8]. Due to its ability to 

reduce greenhouse gas emissions and decrease reliance on 

fossil fuels, biomass is highly regarded in renewable 

energy initiatives worldwide [7]. 

Biomass consists of a heterogeneous mixture of organic 

compounds, including proteins, lignin, lipids, and 

carbohydrates such as starch, hemicellulose, and cellulose, 

all of which influence its conversion into biofuels [9], [10]. 

The conversion of biomass into bio-oil, biochar, and 

syngas is facilitated by various thermochemical processes, 

including pyrolysis, liquefaction, gasification, torrefaction, 

and carbonization. Accurate assessment of elemental 

composition (C, H, N, O, S), proximate analyses (fixed 

carbon, volatile matter, moisture content, ash), and 

structural components (cellulose, hemicellulose, lignin, 

and ether extractives) plays a crucial role in optimizing 

these conversion yields [9], [11]. The ultimate analysis 

(UA) offers a detailed breakdown of the elemental 

composition of biomass, specifically carbon, hydrogen, 

nitrogen, sulphur, and oxygen content, which is essential 

for understanding the combustion characteristics and 

energy potential of the material [6], [12]. Meanwhile, 

proximate analysis (PA) determines the moisture content, 

volatile matter, fixed carbon, and ash content of biomass 

[12]. Together, these analyses provide a comprehensive 

profile of biomass, facilitating more accurate energy 

predictions [13], [14], [15], [16]. 

The growing global focus on sustainable energy has driven 

extensive research into alternative fuels. Biomass, 

particularly wood biomass such as sawdust, is recognized 

as a promising renewable energy source due to its abundant 

availability and carbon-neutral properties [17], [18]. 

Efficient utilization of wood biomass necessitates precise 

prediction of its energy potential, which is crucial for 

optimizing combustion processes, enhancing energy 

recovery, and minimizing environmental impacts [19], 

[20]. Integrating these analytical parameters (ultimate and 

proximate analyses) into a computer-aided model allows 

for the easy and quick prediction of the calorific value (CV) 

or higher heating value (HHV) of biomass [21]. This 

approach not only enhances the precision of energy 

assessments but also facilitates the optimization of biomass 

blending strategies to achieve desired energy outputs. 

Moreover, it supports the development of standardized 

protocols for biomass evaluation, which are essential for 

the broader adoption of biomass energy technologies [21], 

[22], [23]. Therefore, many authors have worked on the 

estimation or prediction of HHV for different biomasses 

based on multiple regression models from their proximate 

and ultimate analyses. The study by Ayúe and Serdar [24] 

applied the Adaptive Neuro-Fuzzy Inference system to 

predict the CV of biomass using proximate analysis. The 

study evaluates empirical models to predict biomass 

calorific value from proximate analysis, achieving 

reasonable accuracy (r2 ≈ 0.812-0.837). However, it 

struggles with low-calorific biomass and requires subclass-

specific analysis for better predictions. Munshi et al. [25] 

predicted the gross calorific value (GCV) of coal using 

advanced decision tree-based ensemble techniques, such as 

bagging, boosting, and extra trees. The article evaluates 

machine learning models for predicting coal's GCV, 

highlighting XGBoost's good accuracy but noting on 

limitations in data generalizability, model complexity, and 

practical industrial application. Erol et al. [26] developed 

13 empirical equations to estimate biomass calorific value 

from proximate analysis, achieving moderate accuracy 

(r2 ≈ 0.829-0.898). However, the limitations include 

variable accuracy across biomass types and higher 

prediction errors for simpler models. 

In recent decades, research combining regression 

modelling and computer-aided techniques for predicting 

the HHV of sawdust biomass based on proximate or 

ultimate analyses has been limited. Most studies have 

primarily focused on empirical models with only a few 

utilizing advanced computational methods. The integration 

of computer-aided techniques offers significant advantages 

for energy prediction by enabling the analysis of complex 

datasets, improving accuracy, and reducing manual 

computation errors. These methods enhance the efficiency 

and sustainability of biomass energy systems by 

simplifying and automating the HHV prediction process. 

[21], [27], [28]. 

Based on the aforementioned points, this study aims to 

develop and evaluate computer-aided prediction models 

that utilize proximate and ultimate analysis data to estimate 

the energy content of selected and blended biomass 

samples. This will serve as a fast and cost-effective tool for 

energy assessment. Specifically, the research seeks to 

demonstrate the effectiveness of computer-aided 

techniques in improving the predictability and reliability of 

biomass energy evaluations. 

A key objective is to establish a strong correlation between 

HHV and the ultimate and proximate characteristics of 

biomass. The accuracy and robustness of these correlations 

are assessed through statistical indicators such as the 

coefficient of determination (R²) and p-values. 

Furthermore, the study developed a predictive software 

application based on the established relationships, enabling 

reliable HHV estimation for various wood biomass types. 

2. MATERIALS AND METHODS

2.1  Materials 

Five sawdust samples were considered in this research for 

energy assessment and prediction. Four of the sawdust 

samples were collected from known parent woods, while 

the fifth sample was obtained from a sawmill dump site. 

These samples were sourced from local sawmills in Ede, 

Osun State, Nigeria during the dry season between 

September to November 2023 to minimize variations due 
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to moisture content and seasonal changes. Additional 

information of the sawdust samples used in this study are 

shown in Table 1. 

The following equipment was used during this research: a 

2000 cm³ graduated cylinder made of transparent glass, an 

electronic mass balance, a crucible, a Fisher Scientific 

Furnace (Model 186A), a Fisher Scientific Isotemp® oven 

(Model 665F), a thermometer, and a bomb calorimeter 

(Model D5865). These instruments were utilized at the 

Central Laboratory, Federal University of Technology, 

Akure, Ondo State, Nigeria. All equipment used is of 

analytical grade, and the testing methods conform to the 

appropriate ASTM standards.  

Table 1 – Information on the sawdust samples. 

S/N Name 
Sample 

Name 

Scientific  

Name 

Collection 

Sawmill 

1 ORUNMODO WBMS1 

Ricinode
ndron 

heudeloti

i 

Atidade 

Sawmill, 

Ede  

2 URE WBMS2 

Dialium 

guineens

e 

Atidade 

Sawmill, 

Ede  

3 AYERE WBMS3 

Albizia 

glaberrim
a 

Oke Gada, 

Ede  

4 ARABA WBMS4 
Ceiba 
pentandra 

Ededimeji 

Sawmill, 

Ede  

5 MIX MWBMS - 
All the 
three 

sawmills 

2.2 Methods 

2.2.1  Experimental procedure 

The experimental procedure involved performing both 

ultimate and proximate analyses on the sawdust biomass 

samples to comprehensively characterize their chemical 

and physical properties. The UA was conducted to 

determine the elemental composition of the samples, 

specifically the percentages of carbon (C), hydrogen (H), 

nitrogen (N), sulfur (S), and oxygen (O) [6]. In contrast, 

PA provides insights into the physical and thermal 

properties of biomass, which are critical for evaluating its 

fuel quality, handling characteristics, and suitability for 

different energy conversion technologies [8], [26], [29]. 

The PA includes measurements of moisture content, 

volatile matter, fixed carbon, and ash content, each of 

which influences biomass combustion efficiency, 

emissions, and residual waste. Both UA and PA are 

fundamental for biomass characterization, as they enable a 

systematic evaluation of the feedstock and facilitate the 

optimization of biomass-based energy systems. The test 

methods used for conducting UA and PA are detailed in 

Tables 2 and 3, respectively. The selected ASTM methods 

were chosen for their standardization, reproducibility, and 

widespread acceptance in biomass characterization, 

ensuring consistency and comparability of the data with 

other studies. 

Table 2 – Ultimate analysis of the samples. 

S/N Element 

Amount of 

Sample 

Tested 

Testing 

Method/Reference 

1 Carbon (%C) 2 g ASTM E 777 [30] 

2 Hydrogen (%H) 2 g ASTM E 777 [30] 

3 Nitrogen (%N) 2 g ASTM E 778 [31] 

4 Oxygen (%O) 
- Akinola and Fapetu 

[32]; James et al. [33] 

5 Sulphur (%S) 1 g ASTM E 775 [34] 

Table 3 – Proximate analysis of the samples. 

S/N Property 

Amount 

of 

Sample 

Tested 

Testing 

Method/Reference 

1 
Moisture Content 

(%MC) 
0.1 g 

ASTM D 2974-8 [35] 

ASTM E870-82 [36] 

2 
Volatile Matter 

Content (%VM) 
2 g 

ASTM E870-82 [36] 

3 
Fixed Carbon 

(%FC) 
2 g 

Akinola and Fapetu 

[32]; James et al. [33] 

4 

High Heating Value 

(HHV) or Calorific 

Value (CV) 

0.25 g 

ASTM E870-82 [36]; 

Erol et al. [26]; 

Giuseppe and Ester, 

[37]; 

Nishiguchi and Tabata 

[38] 

2.2.2  Data analysis 

The data obtained from both PA and UA were used to 

establish a relationship between the energy content (HHV) 

of the wood biomass, the ultimate input parameters (UIP), 

and proximate input parameters (PIP) through regression 

analysis. Regression analysis is a statistical technique 

employed to identify the relationship between one or more 

variables, either through simple regression or multiple 

regression [39], [40]. When conducting linear regression, 

the focus lies on determining the statistical significance of 

the connection between the predictor variable and the 

response variable [39]. This approach considers the 

interactions among the explanatory variables and the 

response variable. In this study, multiple regression 

analysis (MRA) was adopted to establish the relationship 

between the independent variables (UIP and PIP) and the 

dependent variable CV or HHV (energy). Additionally, 

tests were conducted on every regression coefficient in the 

analysis to ascertain their significances in predicting any 

model. This test follows the approach of null and 

alternative hypotheses. The response model of the energy 

content of the biomass with UIP or PIP is defined by 

Equations 1 [41], [42]. 
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Equation 1 presents a linear regression model where the 

dependent variable (HHV) is predicted as a sum of the 

weighted contributions from multiple independent 

variables (xi) [40], [43], [44].

E = ∑ βixi + ∁i=n
i=1   (1) 

In this study, UIP and PIP are classified as independent 

variables, each associated with a coefficient (βi). These

coefficients (βi) reflect the strength and direction of the

relationship between each predictor (xi) and the outcome

(HHV), with positive values indicating a direct relationship 

and negative values indicating an inverse one. The constant 

term C serves as an intercept, accounting for the baseline 

value of HHV when all predictors are zero.  

Furthermore, the summation notation in Equation 1 

encapsulates the combined effect of all n predictors on the 

dependent variable, demonstrating a linear relationship 

where changes in HHV are proportional to changes in the 

independent variables. The extension of the Equation 1 to 

UIP and PIP are presented in Equations 2 and 3 

respectively. 

EUIP = ∑ βixi + ∁ 𝑎

i=n

i=1

  (2)

= β1x1 + β2x2 + β3x3 + β4x4 + β5x5

+ β6x6 + ∁ 𝑎       

EPIP = ∑ γ1xi + ∁ 𝑏  (3)

i=n

i=1

= γ1x1 + γ2x2 + γ3x3 + γ4x4 + γ5x5

+ γ6x6 + ∁ 𝑏       

Where 𝐸𝑈𝐼𝑃  and  𝐸𝑃𝐼𝑃  represent the predicted energy

contents (HHV) from UIP or PIP, respectively.  𝛽𝑖 and γ1

are their corresponding regression coefficients or slopes of 

each term in the models, which indicate the degree of 

dependence of the predicted energy in each case. 

“∁ 𝑎 𝑎𝑛𝑑 ∁ 𝑏” are constants called correction factors.

2.2.2.1 Method for fitting a model 

The ordinary least squares (OLS) approach was used to 

estimate the coefficients of the linear regression model. 

The OLS method aims to minimize the total sum of squared 

deviations between the observed dependent variable 

(HHV) and the predicted values generated by the model. 

The primary goal was to determine the set of coefficients 

βi that would minimize the residual sum of squares (RSS),

which is estimated by Equation 4:  

𝑅𝑆𝑆 = ∑ 𝐻𝐻𝑉𝑂 +

i=n

i=1

𝐻𝐻𝑉𝑃   (4) 

Where 𝐻𝐻𝑉𝑂  represents the observed values of the

variable and 𝐻𝐻𝑉𝑃 represents the predicted values of the

variable. 

The model fitting process was conducted using regression 

software tool package on Microsoft Excel, Version 2021. 

This software provided estimates for the coefficients 𝛽𝑖

and the intercept C. Model diagnostics, such as R-squared, 

adjusted R-squared, and mean squared error (MSE), were 

computed to evaluate the quality of the fit. These metrics 

offer insights into the extent to which the independent 

variables explain the variation in the dependent variable, as 

well as the overall accuracy of the model. The software 

also assessed the accuracy of the model, applied cross-

validation methods, and prevent overfitting. 

The performance indicators obtained from these iterations 

were averaged to yield a more reliable assessment of model 

performance [39], [43]. The statistical tests and diagnostics 

were performed with a significance level of 0.05 to verify 

the statistical validity of the results [40], [45]. For the 

statistical tests, the significance of the regression 

coefficients was assessed using Equations 5 and 6, 

following the null and alternative hypotheses [45].  

Null Hypothesis (Ho): βi = 0

( βithcoefficient is equal to zero? )  (5) 

Alternative Hypothesis (𝐻𝐴): 𝛽𝑖 ≠  0

(βithcoefficient is not equal to zero)  (6) 

The p-value corresponding to the t-statistic was computed 

and used as a basis for decision-making. At a 95% 

confidence level, if the p-value for the t-statistic is less than 

or equal to 0.05 (P ≤ 0.05), the null hypothesis (H₀) is 

rejected. Rejecting H₀ indicates acceptance of the 

alternative hypothesis (Hₐ), signifying a statistically 

significant relationship between the predictor variable 

(HHV) and the response variables in UIP or PIP. 

Conversely, if H₀ is not rejected for any independent 

variable from UIP or PIP, it suggests that the variable does 

not contribute significantly to the model's predictive 

capability [40], [45], [46]. Data analysis was conducted 

using Microsoft Excel, Version 2021 to generate the 

relationships and necessary charts, and a computer 

program was developed to predict future energy levels 

based on UIP and PIP. 

2.2.3  Computer program development 

Computer program development involves creating 

software, which is a collection of instructions or code 

written in a specific programming language that a 

computer executes to perform a defined task or set of tasks. 

This process aims to provide solutions or automate 

processes by manipulating data, controlling hardware 

components, or interacting with users [47]. The complexity 

of a computer program can vary significantly, ranging from 

a simple script or utility to a complex application or system 

software, depending on the requirements and objectives of 

the task [47]. As part of the methodology, a computer 

program was developed to facilitate HHV prediction using 

a set of validated models, as described earlier. This 

program, written in Visual Basic using Microsoft Visual 
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Studio, Version 2022, comprises a series of instructions 

designed to automate the process from data analysis to the 

simulation and prediction of the HHV of biomass upon 

inputting the relevant information. The development 

process involved writing and testing code that manipulates 

data, controls relevant hardware components, and interacts 

with users to achieve the desired outcomes. The program's 

complexity was tailored to meet the study specific 

requirements. The resulting software provided a seamless, 

efficient, and accurate solution for energy prediction based 

on UIP and PIP, significantly reducing errors associated 

with manual computations and playing a crucial role in the 

successful execution of the study's objectives. 

3. RESULTS AND DISCUSSION

3.1 Ultimate analysis 

The result of the ultimate analysis of the biomass samples 

is illustrated in Figures 1-3. The %C and %O contents in 

the biomass are presented in Figure 1. The percentage of 

oxygen (%O) in biomass significantly influences the 

available energy for combustion. While oxygen is 

essential, a higher %O decreases the net energy due to the 

energy consumed during combustion [48]. Among the 

samples, the MWBMS contains 35.89% oxygen, which is 

lower than WBMS-3 (38.98%) and WBMS-4 (52.14%), 

but higher than WBMS-1 (22.82%) and WBMS-2 

(31.80%) (Figure 1). This moderate %O content suggests 

that MWBMS is optimized for energy release during 

combustion [48]. Figure 1 also shows the variation in 

carbon (%C) content among the samples. The %C is a 

primary determinant of energy content, and it varies across 

the samples [49]. MWBMS exhibits 61.28% carbon, which 

is higher than WBMS-3 (55.93%) and WBMS-4 (39.66%), 

but lower than WBMS-1 (68.06%) and WBMS-2 

(63.12%). This balance ensures enhanced energy content 

while minimizing carbon emissions [49]. 

Fig. 1 Analysis of the carbon (C) and oxygen (O) percentages (%) in 
different biomass. 

In terms of other elemental compositions, the hydrogen 

(%H) content in MWBMS is 5.25%, indicating a favorable 

energy yield, while the nitrogen (%N) content, which can 

reduce energy potential, is 1.28% (Figure 2). This is lower 

than in WBMS-2, WBMS-3, and WBMS-4, reducing 

energy loss. Sulfur (%S) content, critical for environmental 

considerations, is 0.006% in MWBMS, which is lower than 

in WBMS-1, WBMS-3, and WBMS-4, thereby minimizing 

harmful sulfur dioxide emissions during combustion 

(Figure 3). Ash content (%ASH), representing non-

combustible materials, is 0.961% in MWBMS, higher than 

WBMS-2 (0.396%) but lower than WBMS-3 (1.160%) and 

WBMS-4 (2.290%). Lower ash content is desirable as it 

maximizes energy yield and reduces slagging during 

combustion. The moderate ash content in MWBMS 

suggests it is well-suited for efficient energy production 

without significant losses [50], [51], [52], [53], [54], [55]. 

Fig. 2 Analysis of hydrogen (H), nitrogen (N), and Ash percentages (%) 
in different biomass. 

Fig. 3 Analysis of sulphur (S) percentage (%) in different biomass. 

3.2 Proximate analysis 

The proximate analysis further supports the energy 

potential of MWBMS in terms of HHV, %MC, %FC, and 

%VM. The MWBMS displayed the highest HHV at 21.83 

MJ/kg, outperforming the individual biomass samples by 

6.60%, 9.90%, 10.60%, and 16.40% for WBMS-1, 

WBMS-2, WBMS-3, and WBMS-4, respectively (Figure 

4). The %MC is lowest in MWBMS (15.41%), facilitating 

higher energy release [56]. Additionally, the %FC content 

in MWBMS is substantial at 59.22%, contributing to a 

strong energy output. The increased %FC content in 

MWBMS enhances energy output due to the greater 

availability of solid carbonaceous material for combustion 

[57]. The analysis of %VM in Figure 4 revealed that 

MWBMS exhibited the highest value among the various 
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biomass samples, except for WBMS-3. The %VM in 

MWBMS demonstrated remarkable increases of 28.90%, 

47.30%, and 37.80% compared to WBMS-1, WBMS-2, 

and WBMS-4, respectively, and was only slightly lower 

than WBMS-3 by 1.50%. Volatile matter refers to the 

combustible gases and hydrocarbons released from 

biomass during combustion, contributing to the overall 

energy content [58]. The high %VM in MWBMS indicates 

a superior energy content, making it ideal for efficient 

energy utilization and enhanced combustibility [59]. Thus, 

the blend of biomass in MWBMS optimizes energy output 

by balancing elemental composition and proximate 

properties, making it a superior choice for efficient energy 

production. 

Fig. 4 Analysis of HHV, MC, FC and VC in different biomass. 

3.3 Model prediction and validation from ultimate and 
proximate analysis 

In this study, statistical regression analysis was employed 

to establish correlations between the energy content of 

biomass and its UIP and PIP. Table 4 shows the statistical 

regression analysis summary of the influence of UIP on the 

caloric value of the biomass.  

Table 4 – Statistical regression analysis summary for UIP and PIP. 

Correlation 

Type 
UIP Values %MC %FC %VM 

Multiple R 0.99842 0.92629 0.88983 0.53014 

R Square 0.99685 0.85801 0.79181 0.28105 

Adjusted R 

Square 
0.99292 0.84026 0.76578 0.19118 

Standard 

Error 
0.09508 0.45168 0.54693 1.01638 

Observations 5 

The multiple regression (Multiple R) value obtained shows 

the correlation and strength of the relationship between the 

independent variables and the dependent variable. The new 

statistical regression analysis summary of each PIP, 

indicating a strong relationship between the energy content 

of the biomass and %MC, %FC, and %VM, accounting for 

92.63%, 88.98%, and 53.01% (Table 4). The closer the 

Multiple R value is to +1 or -1, the stronger the relationship 

[39], [60]. The Multiple R value of 0.998 indicates a strong 

relationship between the UIP (%C, %H, %O, %N, %S, and 

%ASH) and the energy content of the biomass [61]. This 

suggests that 99.7% of the variation in energy (MJ/kg) of 

the biomass can be explained by the UIP [43], [62].  

Table 5 presents the model coefficients, t-statistics, and P-

Values for all the considered UIP variables in predicting 

energy. This analysis highlights the significance of each 

independent variable (UIP) in the regression model. A 

coefficient is deemed significant if its P-Value is ≤ 0.05 at 

a 95% confidence level [23], [39], [41], [44], [61], [62]. 

The initial data analysis showed that the P-Values of all 

UIP variables except %S were significant for energy 

prediction (P-Value ≤ 0.05).  

However, the P-Value associated with sulfur content (%S) 

was relatively large (≈0.22), making it statistically 

insignificant in the model formulation (Ho is accepted in 

this case). Previous literatures have discussed that %S does 

not directly impact the energy content of biomass [63], 

[64], [65]. As a result, %S was excluded from the 

regression model, and the model was rerun to ensure 

accuracy. The final HHV (EUIP) model based on the UIP is 

given by Equation 7. 

EUIP = 0.5083 %C + 0.3942 %H + 0.2592 %N  (7)

+ 0.4244 %O + 0.5802 %Ash− 27.5082       

In validating the predictive model for PIP, which considers 

energy and all PIP variables together, the model failed to 

demonstrate significant P-values for energy prediction. 

The P-values for %MC, %VM, and %FC were 

approximately 0.72, 0.907, and 0.990, indicating statistical 

insignificance (p>0.05), despite a strong combined 

Multiple R (0.929) and a significant Significance-F 

(0.00541). This suggests that linearity and 

multicollinearity issues among the PIP variables hinder 

effective energy prediction [40], [60], [66], [67]. 

Consequently, the PIP variables were separated, and 

energy content was regressed individually with each 

variable. Table 5 presents the new statistical regression 

analysis summary, revealing stronger individual 

relationships between energy content and %MC, %FC, and 

%VM, accounting for 92.63%, 88.98%, and 53.01% of the 

energy (MJ/kg) variations of the biomass types. 

Table 5 – The significant of the model coefficients for UIP. 

UIP 
Model 

Coefficients 
t-Statistics P-value 

Intercept 

(∁ 𝑎)
-27.50821514 -11.59141453 0.000316489 

%ASH 0.580199634 4.329380492 0.012355737 

%C 0.508309132 21.52545124 0.0000275498 

%H 0.394196871 9.055368003 0.000824172 

%N 0.259173994 2.521125312 0.048652785 

%O 0.424363258 17.03461501 0.0000696482 

%S 15.11179753 1.547407628 0.2195076025 
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The results in Table 6 indicate that the P-values of all PIP 

variables, except for %VM, are statistically significant for 

energy prediction (P-value ≤ 0.05). The P-value associated 

with %VM is relatively large (≈0.12), making it 

statistically insignificant in the model formulation, thereby 

leading to the acceptance of the null hypothesis in this 

instance. The weaker correlation of VM in this model may 

be due to its indirect relation to fixed carbon and energy 

content, as well as its variability due to measurement 

conditions [40]. 

The model formulations for energy prediction based on 

each PIP variable are detailed in Equations 8 to 10: 

EPIP = 24.0418 − 0.1055 %MC [p
< 0.05, Significant]  (8) 

EPIP = 14.4248 + 0.1030 %FC [p
< 0.05, Significant]  (9) 

EPIP = 17.4374 + 0.2855 %VM [p
> 0.05, Not Significant]  (10) 

Table 6 – The significant of the model coefficients for PIP 

PIP %MC %FC %VM 

Intercept (∁𝑏) 24.0418 14.4248 17.4374 

Model Coefficients 

(xi) 
-0.1055 0.1030 0.2855 

P-Value 0.000118 0.00056 0.1150 

t-Statistics -6.9530 5.5160 1.7684 

Equation 8 reveals that for every unit increase in %MC, the 

energy of the biomass decreases by 0.1055 MJ/kg. The 

negative coefficient suggests an inverse relationship 

between %MC and energy content, implying that as 

moisture content increases, the energy available for 

combustion decreases due to the energy required to 

evaporate the moisture [8], [24]. In Equation 9, for every 

unit increase in %FC, the energy of the biomass increases 

by 0.1030 MJ/kg [26]. This positive coefficient indicates a 

direct relationship between %FC and energy content, 

which has been also shown by different authors, 

highlighting that higher fixed carbon content contributes to 

more energy being released during combustion [8], [29], 

[68]. Finally, Equation 10 suggests that for every unit 

increase in %VM, the energy of the biomass increases by 

0.2855 MJ/kg. However, the statistical insignificance (p > 

0.05) of this result implies that the relationship between 

%VM and energy content is not robust enough to be 

predictive [69], [70]. 

3.3 Computer program development 

A computer program for predicting energy generation from 

selected and blended wood biomass offers several key 

benefits. It enhances efficiency by automating and 

streamlining the assessment process, ensuring faster and 

more accurate results than manual methods [47]. The 

program reduces the risk of human error, supports 

scalability by handling large datasets, and allows for 

customization to meet specific needs [71]. It also serves as 

a decision support tool, providing valuable insights for 

planning and resource allocation in energy generation [72]. 

The flowchart outlining the program development process 

is presented in Figure 5.  

Fig. 5 Flowchart of the computer program development. 

Additionally, the program ensures reproducibility, aiding 

in research, regulatory compliance, and quality control. 

Overall, it optimizes efficiency, accuracy, scalability, 

flexibility, decision-making, and reproducibility in the 

energy sector [71], [72]. The regression models discussed 

in Section 4.3 were used to develop a computer-based 

program for rapid energy content prediction in wood 

biomass. This program was created using Visual Basic 

(VB) within the Microsoft Visual Studio 2021 

development environment. To run both the host application 

and the developed program successfully, the system must 

meet specific requirements, including a minimum of 2GB 

of RAM and .NET Framework version 4.0 or higher. The 

flowchart outlining the program development process is 

presented in Figure 5.  
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Fig. 6 Launching interface of the program. 

Figures 6 to 10 illustrate various stages of the program's 

interface, showcasing its user interaction and functionality 

in detail. These stages include the initial launch screen, 

where users can access the main functions of the software, 

followed by prediction analysis using the UIP module, 

which relies on elemental composition data for estimating 

the HHV. The interface also displays prediction analysis 

based on %FC and %MC through the PIP module, allowing 

for alternative input pathways depending on data 

availability.  

Finally, the sequence concludes with the program exit 

screen, indicating a completed session. This visual 

walkthrough highlights the intuitive structure and practical 

utility of the application in supporting energy prediction 

tasks. 

Fig. 7 Prediction analysis using UIP. 

Fig. 8 Prediction analysis using %FC. 

Fig. 9 Prediction analysis using %MC. 

Fig. 10 Exiting interface of the program. 

3.4.1  Performance evaluation of the program 

The performance of the developed program was evaluated 

by comparing its predicted HHV outputs, using both UIP 

and PIP from various biomass samples, against the actual 

measured HHV values (Figure 11). The analysis revealed 

that the UIP-based predictions consistently overestimated 

the actual HHV values, while the PIP-based predictions, 

particularly those based on %FC and %MC, were closer to 

the actual values (Figure 11) [8], [24]. The energy 

prediction accuracies of both UIP and PIP are within ±5 

MJ/kg deviations between predicted and experimental 

values across the dataset and is uniformly applicable to all 

individual models or biomass types. Therefore, the 

findings suggest that while the program's UIP predictions 

require further refinement, the PIP-based models, 

especially %FC, offer a more reliable estimate of the 

biomass energy content [6]. This evaluation underscores 

the importance of accurate input selection in predictive 

modelling for biomass energy analysis. The program's 

performance was accessed by comparing its HHV outputs, 

predicted from UIP and PIP variables, against the actual 

energy values from the biomass [29]. 

Fig. 11 Actual and predicted HHV values of the biomass. 

4. CONCLUSION

The study concludes that computer-aided techniques, 

combined with comprehensive ultimate and proximate 

analyses, offer an approach for predicting the energy 

potential of wood biomass, particularly sawdust. By 

establishing a strong correlation between the HHV and the 

biomass's physical and chemical properties, the research 

demonstrates the viability of using regression models for 

accurate energy assessments. The developed computer 
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program effectively automates the prediction process, 

reducing the time and effort required for analysis while 

maintaining accuracy for all sample type are within  ±5 

MJ/kg. This not only enhances the efficiency of energy 

recovery from biomass but also supports the broader goal 

of sustainable energy development by enabling more 

precise optimization of biomass energy systems. The 

findings emphasize the importance of integrating advanced 

computational tools in biomass energy research, which can 

lead to improved resource utilization and reduced 

environmental impact. Future research should focus on 

expanding the model's applicability to other biomass types 

and refining the predictive algorithms for even greater 

precision. These include extending the model to other 

biomass categories (such as agricultural residues and 

aquatic biomass), increasing sample size for broader 

generalization, and integrating advanced techniques such 

as deep learning or ensemble machine learning methods for 

enhanced predictive performance. 
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