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A B S T R A C T 

Gearbox fault detection plays a crucial role in ensuring the reliable operation of 

machinery and preventing costly downtime. This research thesis aims to develop and 

evaluate ensemble learning techniques for accurate detection of gearbox broken tooth 

conditions using vibration data from SpectraQuest's Gearbox Fault Diagnostics 

Simulator. The dataset comprises vibration readings from sensors under both healthy 

and broken tooth conditions. A thorough analysis of the Gearbox Fault Diagnosis 

Dataset was conducted, integrating time and frequency domain analyses to inform 

feature engineering. A comprehensive comparative analysis of bagging, boosting, 

stacking, and voting approaches was conducted. The standout performer is the 

AdaBoostClassifierET, achieving an accuracy of 87.56%, precision of 88.36%, recall 

of 86.38%, and an F1 score of 87.36%. Bagging methods also exhibit commendable 

performance, with the BaggingClassifierET achieving an accuracy of 87.38%, 

precision of 87.17%, recall of 87.50%, and an F1 score of 87.34%. The research also 

highlights the significance of base model choices in ensemble techniques, as different 

base model choices yielded different results in all four techniques. The study surpasses 

previous work by incorporating a comprehensive set of ensemble techniques, 

advanced feature engineering informed by time and frequency domain analyses, and 

a nuanced evaluation of overfitting concerns. 
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1. INTRODUCTION

In mechanical engineering and industry, accurate and 

timely detection of gearbox faults is of paramount 

importance to ensure operational efficiency and avoid 

costly breakdowns. Over the years, researchers have 

endeavored to harness the power of advanced technologies 

and machine learning algorithms to develop more effective 

and efficient methods for gearbox fault diagnosis. 

Gearbox fault detection plays a crucial role in ensuring the 

reliable operation of machinery and preventing costly 

downtime. In recent times, complex systems have become 

more interdependent, with various components such as 

bearings, gears, cam, and shafts relying on each other [1]. 

The failure of a single component can lead to the entire 

system shutting down, making gearbox failures a critical 

concern. Identifying and diagnosing faults in gearboxes is 

essential to mitigate potential monetary and life losses [2]. 

In this research thesis, we aim to investigate and propose 

machine learning techniques for gearbox fault detection to 

enhance system reliability and minimize downtime. 

Gearboxes operate under both constant and varying 

operating conditions. The continuous degradation of gears, 

particularly under varying operating conditions, poses a 

significant challenge. If gear faults go undetected, it can 

lead to severe consequences, including substantial 

financial losses and potential risks to human life [2]. 

In gear systems, stresses are primarily pure rolling at the 

pitch line, while rolling-sliding action occurs above and 

below the pitch line, with the sliding direction being 

opposite [3]. Adequate lubrication is crucial to ensure 

smooth operation in the sliding interfaces. However, 

insufficient lubrication can lead to direct contact between 
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surfaces, resulting in surface disparities, increased 

temperature, and adhesive bonding under high pressure, 

ultimately leading to the breakdown of gear surfaces. 

The gear roots experience both tension and compression 

simultaneously, with the root being the point of highest 

stress in tension [4]. The bending strength of the root 

depends on factors such as surface hardness, surface 

smoothness, sharpness of radius, and the presence of faults 

such as cracks or pitting [2]. Understanding these factors is 

essential for developing effective gearbox fault detection 

techniques [5]. Gearbox failures can be categorized into 

two main types: lubricated failures and non-lubricated 

failures [2]. Lubricated failures encompass issues such as 

pitting and mild wear, often caused by insufficient 

lubrication or adverse operating conditions [6]. On the 

other hand, non-lubricated failures include fractures and 

bending, resulting from excessive loads and harsh 

environmental conditions. 

This study seeks to develop and evaluate ensemble learning 

techniques for the accurate and timely detection of gearbox 

broken tooth conditions using vibration data. Specifically, 

the study will utilize the Gearbox Fault Diagnosis Dataset 

recorded by SpectraQuest's Gearbox Fault Diagnostics 

Simulator. The study proposes a reliable and efficient 

machine learning ensemble-based approach that utilizes 

vibration data. The utilization of the Gearbox Fault 

Diagnosis Dataset recorded by SpectraQuest's Gearbox 

Fault Diagnostics Simulator will provide valuable insights 

into the effectiveness of the developed techniques. 

2. METHODOLOGY

The process involves data collection, preprocessing, 

feature engineering, model selection, training, evaluation, 

and interpretation. The tool used to carry out every step of 

the experimentation and methodology was Python V3.10.1 

and the development environment was a kaggle jupyter 

notebook Integrated Development Environment. The 

dataset employed in this research encompasses vibration 

data recorded by SpectraQuest’s Gearbox Fault 

Diagnostics Simulator [7]. The dataset includes readings 

from four vibration sensors placed in different directions 

under varying load conditions. Two distinct scenarios were 

considered, the Healthy Condition represented by 

filenames starting with "h" (e.g., h30hz0.csv, 

h30hz10.csv, ..., h30hz90.csv). These files pertain to a 

healthy gearbox at different load levels ranging from 0% to 

90% in increments of 10%. And the Broken Tooth 

Condition indicated by filenames starting with "b" (e.g., 

b30hz0.csv, b30hz10.csv, ..., b30hz90.csv). These files 

correspond to a gearbox with a broken tooth under varying 

load conditions. 

2.1 Sensor configuration and data format 

Data was collected from four sensors, denoted as a1, a2, 

a3, and a4, each providing readings in different directions. 

The data was sampled at a rate of 30Hz, as indicated by the 

"30hz" in the filenames. This information allows us to 

interpret the data as a continuous signal and analyze it both 

in the time domain and frequency domain. 

The filename structure provides essential details of the 

prefix and suffix. The prefix is the first character in the 

filename denoting the gearbox condition, with "h" for 

healthy and "b" for a gearbox with a broken tooth and the 

suffix is the last 1-2 characters representing the load 

condition during data collection, ranging from 0 to 90 in 

increments of 10.  

The dataset comprises a total of 8,036 samples, with an 

almost equal distribution between the two classes: healthy 

gearboxes (50.2%) and those with a broken tooth (49.8%). 

80-20 splits of the dataset into training and testing sets were 

conducted. This stratified split ensures a proportional 

representation of both classes in both sets. 

2.2 Data collection process 

The data collection process involved reading and 

consolidating information from 20 files, ten each for 

healthy and broken tooth gearboxes. Each file corresponds 

to a specific load condition, contributing to a 

comprehensive dataset for analysis. 

To facilitate analysis, the dataset was transformed into a 

"tall-form" where sensor readings are organized as follows: 

Sample Index (an index indicating the order of readings), 

State (indicating the gearbox condition i.e., healthy or 

broken tooth), Load (denoting the load condition during 

data collection), Sensor (specifying the sensor i.e., a1, a2, 

a3, or a4) from which the reading originated, and Reading 

(the actual vibration reading recorded by the respective 

sensor). 

This melted dataset structure allows for efficient 

exploration and analysis of the sensor readings in 

subsequent stages of the research. 

2.3 Time domain analysis 

The data collected from sensor 'a1' was utilized to discern 

patterns and variations between healthy and broken tooth 

gearboxes under different load conditions. Readings from 

sensor 'a1' for both healthy and broken tooth gearboxes at 

loads of 0% and 90% were plotted. 

To advance the analysis, features were extracted for each 

sample, encompassing sensor information, load, mean, 

standard deviation, kurtosis, skewness, and moments. The 

resulting dataset comprises a total of 8,036 samples, with 

the fault class constituting approximately 49.8% of the 

total samples. The dataset was then split into training and 

test sets. 

The time domain analysis unveiled distinct patterns in 

sensor readings between healthy and broken tooth 

gearboxes. The subsequent feature generation process sets 

the stage for machine learning approaches to differentiate 

between the two gearbox states based on temporal 

characteristics. 

2.4 Frequency domain analysis 

In pursuit of a more comprehensive understanding of the 

gearbox fault diagnosis dataset, we turned to frequency 

domain analysis. This approach is crucial as it allows for 

uncovering valuable insights into the vibrational 
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characteristics of the system by examining its component 

frequencies.  

Fourier transformation, conducted using the Scipy fast 

Fourier transform (FFT) module, was employed to 

decompose a single sensor reading into its constituent 

frequencies, providing a spectral representation of the data. 

From the resulting frequency spectrum, distinct peaks 

corresponding to specific frequencies were obtained. 

Furthermore, Power Spectral Density (PSD) analysis was 

employed to illustrate the distribution of power across 

different frequencies. This analysis provided a clearer 

representation of the dominant frequency components 

present in the data. Understanding these frequency 

components is essential for identifying anomalies or 

patterns indicative of gearbox faults, thereby contributing 

to more effective fault diagnosis and maintenance 

strategies. 

2.5 Model selection 

Different ensemble learning models were considered, 

including boosting, bagging, voting, and stacking 

algorithms. The selection of these models was based on 

their suitability for binary classification and their ability to 

handle high-dimensional feature sets. The chosen models 

were then trained on the training dataset. Feature matrices 

and target labels were fed into the models for parameter 

estimation, as illustrated in Fig. 1. 

Fig. 1 Model Training Workflow

2.6 Model evaluation 

The evaluation process aimed to provide a thorough 

understanding of each model's strengths and weaknesses, 

aiding in the selection of the most suitable approach for 

practical applications. Standard classification metrics used 

to evaluate the models include the accuracy metric, as 

expressed in Eq. (1). Accuracy measures the overall 

correctness of the model's predictions and is calculated as 

the ratio of correctly predicted instances to the total 

instances. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
(1) 

The precision measures the accuracy of positive 

predictions and is defined as the ratio of true positive 

predictions to the total predicted positives as expressed in 

Eq. (2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  (2) 

Recall also known as sensitivity or true positive rate was 

used to quantify the ability of the model to capture all 

positive instances. It is calculated as the ratio of true 

positives to the total actual positives as expressed in Eq. 

(3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
(3) 

The F1 score expressed in Eq. (4) is the harmonic mean of 

precision and recall, providing a balanced measure that 

considers both false positives and false negatives. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(4) 

The confusion matrix offers a detailed breakdown of the 

model's predictions, including true positives, true 

negatives, false positives, and false negatives. It provides 

insights into the model's ability to classify instances 

correctly. 
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3. RESULTS AND DISCUSSION

This section presents a comprehensive analysis of the 

gearbox fault detection process, divided into three main 

parts: Time Domain Analysis, Frequency Domain 

Analysis, and Model Evaluation. Each part provides 

detailed insights into the methodologies and findings 

relevant to detecting gearbox faults using vibration sensor 

data. The subsequent comparative analysis summarizes the 

performance of various ensemble learning models. 

3.1 Time domain analysis results 

The analysis began by examining readings from sensor a1, 

which revealed noticeable differences in amplitude 

between the two gearbox states, indicating distinct 

vibration patterns (Fig. 2). To assess the overall 

distribution of readings across all sensors, boxplots were 

utilized (Fig. 3). Notably, sensor 'a1' exhibited a substantial 

amplitude difference between healthy and broken 

gearboxes, particularly under increasing load. In contrast, 

sensors 'a2', 'a3', and 'a4' showed comparatively smaller 

differences.  

Focusing on sensor 'a1' in the first row of Fig. 3, a 

significant difference in amplitude distribution between the 

healthy and broken tooth gearboxes is observed. However, 

when excluding sensor 'a1' from the analysis, the standard 

deviation across all sensors aligned more closely (4.28) as 

opposed to 4.82 when sensor a1 is included. Hence, a 

decision was made to exclude sensor a1 from the analysis. 

3.2 Frequency domain results 

Upon visualizing the transformed data, we identified 

distinct peaks in the frequency spectrum (Red dots in Fig. 

4). Primary harmonics emerged at 2.23 Hz intervals, 

accompanied by minor peaks between these intervals. This 

finding laid the groundwork for a more detailed analysis of 

spectral features.

Fig. 2 Readings from sensor a1 

Fig. 3 Plots of Sensor Readings for sensors a1, a2, a3, a4. Each row is a different sensor, each column shows increasing load and each plot shows 
the distribution of reading values between the healthy and broken gearbox 

Fig. 4 Peaks in the Transformed Data 
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Expanding the investigation, the PSD for each sensor was 

compared at various loads between healthy and broken 

gearboxes. Discrepancies in power distribution, 

particularly on sensors a1, a2, and a3, were vividly 

displayed in the resulting plots, suggesting potential 

indicators of gearbox health. To assess temporal variations, 

spectrograph view could be employed to reveal the stability 

of the spectrum over time. The stability of the spectrum 

over time was demonstrated by the spectrogram plots, 

showing that the spectrum remains relatively constant 

across different time intervals. 

Crucial information about the vibrational characteristics of 

the gearbox data is unveiled by Frequency domain 

analysis. Spectral features are explored, peaks identified, 

and PSDs compared, laying the groundwork for 

subsequent machine learning endeavors in gearbox fault 

detection. The robustness of these analyses will be 

enhanced by the stability of the spectrum over time, 

contributing valuable insights to the expected output. 

3.3 Model evaluation 

Table 1 presents the modeling results of boosting 

algorithms, offering a comprehensive overview of 

performance metrics for various ensemble learning 

techniques utilized in gearbox fault detection using 

vibration sensor data. The study specifically concentrates 

on Gradient Boosting Classifier, XGB Classifier, 

AdaBoost Classifier ET, AdaBoostClassifierRF, and 

AdaBoostClassifierBG. The results highlight the 

effectiveness of boosting ensemble learning techniques in 

enhancing gearbox fault detection model performance. 

AdaBoostClassifierET, employing the extra trees 

algorithm as the base estimator, emerges as noteworthy, 

achieving the highest accuracy (87.56%) and precision 

(88.36%). This indicates its capability to accurately 

identify positive instances while minimizing false 

positives. AdaBoostClassifierBG, utilizing the Bagging 

Algorithm as the base estimator, also demonstrates 

balanced performance across all metrics, underscoring its 

reliability in fault diagnosis. 

Table 1 - Modeling results of Boosting Algorithms. 

   Model 
Accuracy Precision Recall 

F1 

Score 

(%) (%) (%) (%) 

   Gradient Boosting 

   Classifier 
83.83 83.33 84.38 83.85 

   XGB Classifier 85.32 85.79 84.5 85.14 

AdaBoostClassifierET 
87.56 88.36 86.38 87.36 

AdaBoostClassifierRF 
86.75 87.39 85.75 86.56 

AdaBoostClassifierBG 
87.44 87.38 87.38 87.38 

Fig. 5 illustrates the confusion matrix for the top-

performing boosting algorithm, the AdaBoost Classifier 

ET, in the context of gearbox fault detection. In this 

context, the positive label indicates a fault condition, 

specifically a broken tooth in the gearbox, while the 

negative label denotes a healthy tooth condition. The 

classifier achieves an accuracy of 87.56%, indicating its 

proficiency in making correct predictions. 

Fig. 5 Confusion Matrix - AdaBoost Classifier ET 

Within the matrix, the true negatives (88.74%) represent 

instances where the model accurately identified healthy 

conditions, while the false positives (11.26%) indicate 

cases where the classifier incorrectly flagged a healthy 

condition as faulty. On the fault side, the false negatives 

(13.63%) depict instances where the model failed to detect 

an actual fault, and the true positives (86.38%) highlight 

successful identifications of faulty conditions. Analyzing 

these components underscores the importance of 

scrutinizing false positives and false negatives. Minimizing 

these errors is critical for refining precision (correctly 

identifying faults when predicted) and recall (capturing all 

actual faults), respectively. 

This examination of the confusion matrix provides 

nuanced insights into the AdaBoost Classifier ET's 

performance, offering valuable information for optimizing 

the model to enhance gearbox fault detection, particularly 

in distinguishing between healthy and faulty tooth 

conditions in industrial machinery. 

In Table 2, the performance metrics of the Bagging 

Classifier models, BaggingClassifierRF and 

BaggingClassifierET, are elaborated within the context of 

gearbox fault detection. For BaggingClassifierRF, the 

model demonstrates an accuracy of 86.69%, with 

precision, recall, and F1 score at 87.09%, 86.00%, and 

86.54%, respectively. These metrics collectively illustrate 

the model's proficiency in correctly identifying both 

healthy and faulty tooth conditions. Similarly, 

BaggingClassifierET exhibits strong performance, 

achieving an accuracy of 87.38%, precision of 87.17%, 

recall of 87.50%, and an F1 score of 87.34%. This 

comprehensive evaluation highlights the robustness of 

both Bagging Classifier models in effectively discerning 

between healthy and faulty tooth conditions in gearbox 

fault detection tasks. 

Comparing the performance metrics of the Bagging 

Classifier models (BaggingClassifierRF and 
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BaggingClassifierET) with the boosting models from 

Table 1 reveals interesting insights into their respective 

strengths in gearbox fault detection. The boosting models, 

represented by AdaBoost Classifier ET, 

AdaBoostClassifierRF, and AdaBoostClassifierBG, 

consistently showcase competitive metrics. It could be 

observed that for instance, AdaBoost Classifier ET 

achieves an accuracy of 87.56%, slightly outperforming 

BaggingClassifierET. Additionally, in terms of precision, 

recall, and F1 score, the boosting models exhibit 

comparable or marginally superior performance compared 

to the Bagging Classifier models. This suggests that both 

ensemble techniques demonstrate efficacy in handling the 

complexities of gearbox fault diagnosis, with boosting 

models holding a slight edge in certain metrics. 

Table 2 - Performance Metrics of Bagging Classifier Models 

   Model 
Accuracy Precision Recall 

F1 

Score 

(%) (%) (%) (%) 

Bagging Classifier RF  86.69 87.09 86 86.54 

Bagging Classifier ET 87.38 87.17 87.5 87.34 

Table 3 presents the modeling results for the 

StackingClassifier, revealing its performance in gearbox 

fault detection using ensemble learning. The 

StackingClassifier achieves an accuracy of 85.88%, 

showcasing its ability to make correct overall predictions. 

The precision of 85.95% indicates its competence in 

accurately identifying positive instances, representing the 

cases of gearbox faults. The recall, at 85.62%, signifies the 

model's capability to capture the majority of actual positive 

instances, demonstrating its sensitivity to identifying 

faults. The F1 score, which combines precision and recall 

into a single metric, stands at 85.79%, underscoring the 

balanced performance of the StackingClassifier. These 

results collectively suggest that the StackingClassifier is a 

promising ensemble learning technique for gearbox fault 

detection, providing a harmonious trade-off between 

precision and recall, crucial metrics in the context of 

condition monitoring and fault diagnosis in mechanical 

systems. 

Table 3 - Performance Metrics of The Stacking Classifier 

   Model 
Accuracy Precision Recall 

F1 

Score 

(%) (%) (%) (%) 

StackingClassifier 85.88 85.95 85.62 85.79 

Table 4 presents the performance metrics of two different 

configurations of the VotingClassifier: 

• VotingClassifierEBA (with ExtraTrees estimator

• Bagging estimator,

• AdaBoostModelET as base estimators) and

VotingClassifierDKS (with Decision Tree

Classifier,

• KNeighborsClassifier

• Support Vector Classifier as base estimators).

These models were evaluated for gearbox fault detection 

based on accuracy, precision, recall, and F1 score. The 

VotingClassifierEBA achieved an accuracy of 87.50%, 

with a precision of 87.86%, recall of 86.88%, and an F1 

score of 87.37%. In comparison, the VotingClassifierDKS 

exhibited an accuracy of 85.88%, precision of 86.68%, 

recall of 84.62%, and an F1 score of 85.64%.  

These results provide valuable insights into the 

comparative performance of the two configurations and 

show that the VotingClassifierEBA consistently 

outperforms the VotingClassifierDKS on all evaluated 

metrics. The high precision and recognition scores 

achieved by both configurations demonstrate their 

effectiveness in accurately identifying gear faults while 

minimizing false positives and false negatives. 

Furthermore, the robust performance of the 

VotingClassifierEBA highlights its superior ability to 

process the dataset and make reliable predictions. This 

suggests that the VotingClassifierEBA is the better choice 

for real-world applications where accuracy and reliability 

are critical. 

Table 4 - Performance Metrics of The Voting Classifier 

   Model 
Accuracy Precision Recall 

F1 

Score 

(%) (%) (%) (%) 

VotingClassifierEBA 87.5 87.86 86.88 87.37 

VotingClassifierDKS 85.88 86.68 84.62 85.64 

The confusion matrix in Fig. 6 illustrates the performance 

of the best voting model, VotingClassifierEBA, for 

gearbox fault detection. In this matrix, the diagonal 

elements indicate correctly classified instances, with an 

accuracy of 87.50%. The model demonstrates a balanced 

ability to identify both positive and negative cases, as 

evident from the precision of 87.86% and recall of 86.88%. 

These metrics signify the model's effectiveness in correctly 

recognizing instances of gearbox faults while minimizing 

false positives and false negatives. The F1 score, calculated 

as the harmonic mean of precision and recall, stands at 

87.37%, further emphasizing the model's overall 

performance. These results collectively highlight the 

robustness of the VotingClassifierEBA in gearbox fault 

diagnosis, showcasing its potential for practical 

applications in fault detection systems. 

Fig. 6 Confusion Matrix – VotingClassifierEBA 
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3.4 Comparative analysis 

In Fig. 7, the bar chart vividly illustrates the varying 

accuracies of different ensemble learning models 

employed for gearbox fault detection. The best models in 

each technique have been selected for this comparative 

analysis. Notably, the AdaBoostClassifierET emerges as 

the highest-performing model with an accuracy of 87.56%, 

showcasing its capability to make correct predictions 

across fault and non-fault instances. Following closely is 

the VotingClassifier at 87.50%, indicating its robust 

performance in identifying gearbox faults. The 

BaggingClassifierET and StackingClassifier exhibit 

competitive accuracies of 87.38% and 85.88%, 

respectively. This demonstrates the effectiveness of 

ensemble learning techniques in enhancing overall model 

accuracy, which is crucial for real-world applications in 

fault diagnosis. 

Fig. 7 Bar Chart of Model Accuracies 

Turning attention to Fig. 8, the bar chart illustrates the 

recall values, providing insights into the models' abilities 

to correctly identify instances of gearbox faults. Here, the 

BaggingClassifierET stands out with a recall of 87.50%, 

underscoring its proficiency in capturing a significant 

proportion of actual positive cases. The VotingClassifier 

closely follows with a recall of 86.88%, indicating its 

balanced sensitivity to both fault and non-fault conditions. 

The AdaBoostClassifierET and StackingClassifier exhibit 

commendable recall values of 86.38% and 85.62%, 

respectively, emphasizing their effectiveness in 

minimizing false negatives and ensuring comprehensive 

fault detection. 

Fig. 8 Bar Chart of Model Recalls 

Precision, visualized in Fig. 9, is a critical metric to assess 

the models' accuracy in identifying true positive cases 

among all predicted positives. The AdaBoostClassifierET 

impressively leads with a precision of 88.36%, showcasing 

its ability to minimize false positives. The VotingClassifier 

follows closely at 87.86%, emphasizing its precision in 

correctly classifying gearbox faults. The 

BaggingClassifierET and StackingClassifier exhibit 

competitive precision values of 87.17% and 85.95%, 

respectively. These results highlight the models' precision-

driven performance, crucial for applications where 

minimizing false alarms is paramount. 

Fig. 9 Bar Chart of Model Precisions 

Finally, Fig. 10 showcases the F1 scores, providing a 

holistic assessment by balancing precision and recall. The 

AdaBoostClassifierET again leads with an F1 score of 

87.36%, emphasizing its comprehensive and balanced 

performance. The VotingClassifier closely follows at 

87.37%, underlining its effectiveness in achieving a 

harmonious trade-off between precision and recall. 

Fig. 10 Bar Chart of Model F1-Scores 

The BaggingClassifierET and StackingClassifier present 

competitive F1 scores of 87.34% and 85.79%, respectively. 

Collectively, these findings substantiate the efficacy of 

ensemble learning models in gearbox fault detection, with 

each model demonstrating unique strengths in balancing 

precision, recall, and overall accuracy as shown in Table 5. 

Fig.11 presents the Receiver Operating Characteristic 

(ROC) curve for the best-performing model, 

AdaBoostClassifierET, depicting its discrimination ability 
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between healthy and faulty gearbox conditions. The 

Receiver Operating Characteristic (ROC) curve plots the 

true positive rate against the false positive rate at various 

thresholds. The Area Under the Curve (AUC) summarizes 

the ROC curve, indicating the model's ability to distinguish 

between classes. 

Table 5 - Summary Evaluation of Ensemble Models for Gearbox Fault 
Detection: Accuracies, Precisions, Recalls, and F1 Scores 

   Model 
Accuracy Precision Recall 

F1 

Score 

(%) (%) (%) (%) 

Stacking 

Classifier 
85.88 85.95 85.62 85.79 

AdaBoost 
 Classifier ET 

87.56 88.36 86.38 87.36 

Bagging 

ClassifierET  
87.38 87.17 87.5 87.34 

Voting 

  ClassifierEBA 
87.5 87.86 86.88 87.37 

The evaluation process was standardized across all models, 

ensuring consistent and fair comparisons. After training 

each model on the standardized training dataset, 

predictions were made on the test dataset. Subsequently, 

the models were subjected to the evaluation code. 

Fig. 11 Receiver Operating Characteristic (ROC) curve for the best-
performing model 

The evaluation process was standardized across all models, 

ensuring consistent and fair comparisons. After training 

each model on the standardized training dataset, 

predictions were made on the test dataset. Subsequently, 

the models were subjected to the evaluation code. 

The ROC-AUC curve, along with the AUC score, adds a 

layer of analysis by illustrating the trade-off between true 

positive rate and false positive rate. This curve is 

particularly valuable for assessing the model's 

discriminative ability. Together, these evaluation metrics 

contribute to a holistic assessment, enabling informed 

decision-making regarding the most effective machine 

learning approach for gearbox fault diagnosis in industrial 

applications. 

The curve gracefully ascends, with an Area Under the 

Curve (AUC) score of 0.8756, indicating strong predictive 

performance. The False Positive Rate (FPR) and True 

Positive Rate (TPR) trade-off is visually evident, 

showcasing the model's capability to balance between 

correctly identifying positive cases (faulty gearbox) and 

minimizing false alarms. The thresholds at various points 

on the curve are marked, offering insights into the model's 

sensitivity at different decision boundaries. The steep rise 

in TPR with a relatively low FPR underscores the model's 

effectiveness in distinguishing between classes. Overall, 

the ROC curve and AUC score affirm the robustness and 

reliability of the AdaBoostClassifierET in gearbox fault 

detection. 

4. CONCLUSION

The study evaluates ensemble learning techniques for 

gearbox fault detection, primarily using vibration sensor 

data augmented by time and frequency domain analysis in 

a careful feature engineering process. The 

AdaBoostClassifierET performed best with 87.56% 

accuracy, 88.36% precision, 86.38% recall and 87.36% F1-

score, making it the most reliable choice for distinguishing 

healthy from faulty gearboxes. 
Other ensemble methods, especially bagging-based 

methods, also performed well. For example, the 

BaggingClassifierET achieved an accuracy of 87.38%, a 

precision of 87.17%, a recall of 87.50% and an F1-score of 

87.34. The study emphasizes the importance of selecting 

appropriate base models in ensemble techniques and finds 

that stacking and voting methods perform excellently in 

combination with base models from boosting or bagging 

algorithms, providing valuable insights for practitioners in 

the detection of gearbox faults. 

In contrast to previous work that achieved 87.5% accuracy 

with the logit boosting algorithm [8], our approach 

outperforms this value by exploring a wider range of 

ensemble techniques (bagging, boosting, stacking, and 

voting), allowing for a more comprehensive analysis. 

Notably, [8] reported a test accuracy of 100, possibly 

indicating overfitting and limited generalizability, 

highlighting the need for robust evaluation metrics. 

Furthermore, the study is limited to broken teeth in 

gearboxes, which may limit direct generalization to other 

failure modes or operating contexts. Future research could 

explore adaptive ensemble configurations that are able to 

dynamically adjust the ensemble composition during 

runtime to account for evolving data patterns. This 

adaptive approach promises to improve fault detection and 

diagnosis in different operating scenarios and provide a 

more robust framework for monitoring and maintenance of 

transmissions. 
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